Fas deficiency prevents type 1 diabetes by inducing hyporesponsiveness in islet beta-cell-reactive T-cells.

نویسندگان

  • Luis Vence
  • Christophe Benoist
  • Diane Mathis
چکیده

Type 1 diabetes is an autoimmune disease wherein autoreactive T-cells promote the specific destruction of pancreatic islet beta-cells. Evidence for a crucial role for Fas/FasL interactions in this destruction has been highly controversial because of the pleiotropic effects of Fas deficiency on the lymphoid and other systems. Fas-deficient mice are protected from spontaneous development of diabetes not because Fas has a role in the destruction of beta-cells, but rather because insulitis is abrogated. Fas may somehow be involved in the series of events provoking insulitis; for example, it may play a role in the physiological wave of beta-cell death believed to result in the export of pancreatic antigens to the pancreatic lymph nodes and, thereby, to circulating, naive, diabetogenic T-cells for the first time. To explore the implication of Fas in these events, we crossed the lpr mutation into the BDC2.5 model of type 1 diabetes to make it easier to monitor direct effects on the pathogenic specificity. We demonstrated that BDC2.5/NOD(lpr/lpr) mice have qualitatively and quantitatively less aggressive insulitis than do BDC2.5/NOD mice. In vitro proliferation assays showed that BDC2.5/NOD(lpr/lpr) splenocytes proliferated less vigorously than those from control mice in the presence of islet extracts, which reflects their inability to produce interleukin-2, resulting in weaker pathogenicity.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Islet Amyloid Polypeptide is not a Target Antigen for CD8+ T-Cells in Type 2 Diabetes

Background: Type 2 diabetes (T2D) is a chronic metabolic disorder in which beta-cells are destroyed. The islet amyloid polypeptide (IAPP) produced by beta-cells has been reported to influence beta-cell destruction. Objective: To evaluate if IAPP can act as an autoantigen and therefore, to see if CD8 + T-cells specific for this protein might be present in T2D patients. Methods: Peripheral blood ...

متن کامل

Islet-specific expression of IL-10 promotes diabetes in nonobese diabetic mice independent of Fas, perforin, TNF receptor-1, and TNF receptor-2 molecules.

Several death-signaling or death-inducing molecules have been implicated in beta cell destruction, including Fas, perforin, and TNFR-1. In this study, we examined the role of each death-signaling molecule in the IL-10-accelerated diabetes of nonobese diabetic (NOD) mice. Groups of IL-10-NOD mice, each deficient in either Fas, perforin, or TNFR-1 molecules, readily developed insulitis, and subse...

متن کامل

Nitric Oxide Primes Pancreatic β Cells for Fas-mediated Destruction in Insulin-dependent Diabetes Mellitus

Fas is an apoptosis-inducing surface receptor involved in controlling tissue homeostasis and function at multiple sites. Here we show that beta cells from the pancreata of newly diagnosed insulin-dependent diabetes mellitus (IDDM) patients express Fas and show extensive apoptosis among those cells located in proximity to Fas ligand-expressing T lymphocytes infiltrating the IDDM islets. Normal h...

متن کامل

Expression of IGF-I in pancreatic islets prevents lymphocytic infiltration and protects mice from type 1 diabetes.

Type 1 diabetic patients are diagnosed when beta-cell destruction is almost complete. Reversal of type 1 diabetes will require beta-cell regeneration from islet cell precursors and prevention of recurring autoimmunity. IGF-I expression in beta-cells of streptozotocin (STZ)-treated transgenic mice regenerates the endocrine pancreas by increasing beta-cell replication and neogenesis. Here, we exa...

متن کامل

Effective Destruction of Fas-deficient Insulin-producing β Cells in Type 1 Diabetes

In type 1 diabetes, autoimmune T cells cause destruction of pancreatic beta cells by largely unknown mechanism. Previous analyses have shown that beta cell destruction is delayed but can occur in perforin-deficient nonobese diabetic (NOD) mice and that Fas-deficient NOD mice do not develop diabetes. However, because of possible pleiotropic functions of Fas, it was not clear whether the Fas rece...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Diabetes

دوره 53 11  شماره 

صفحات  -

تاریخ انتشار 2004